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Chapter 7

Introduction to Sieves

7.1 Motivation: Counting Primes

One of the most important questions in number theory is:

Fundamental Question. Given a set A ✓ Z+, how many primes are in A ?

Many results and open problems in number theory can be formulated in this way.

For example:

(i) Let A = Z+. Then,

• Euclid showed that A contains infinitely many primes.

• The Prime Number Theorem states that

⇡(x) = #{p 2 A \ (1, x]} ⇠
x

log x
as x ! 1.

• The Riemann Hypothesis is equivalent to the statement

⇡(x) =

Z
x

2

dt

log t
+O(x1/2+").

(ii) The Twin Prime Conjecture states that the set A ··= {p + 2 : p is prime}

contains infinitely many primes.
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(iii) The n2 + 1 problem asks whether the set A ··= {n2 + 1 : n 2 Z+
} contains

infinitely many primes.

One way to tackle this fundamental question is via multiplicative number theory,

which uses the following property of the primes:

Property 1. Primes generate the positive integers via multiplication.

Property 1 allows us to reformulate the fundamental theorem of arithmetic as

⇣(s) =
1X

n=1

1

ns
=
Y

p

⇣
1�

1

ps

⌘�1

.

Let’s look again at the example A = Z+:

• The fact that A contains infinitely many primes follows from the fact that

⇣(s) has a pole at s = 1;

• The Prime Number Theorem is equivalent to the fact that ⇣(1 + it) 6= 0;

• The Riemann Hypothesis states that all non-trivial zeros of ⇣(s) lie on the line

Re(s) = 1/2.

In particular, we can see that there is an interesting connection between the zeros

of the zeta function and the primes! The limitation of studying the Riemann zeta

function is that we (still) have a rather limited understanding of its zeros.

The purpose of the second half of this course is to examine another set of methods

for tackling our fundamental question. We refer to these methods as sieve methods.

These new methods take a di↵erent approach using another important property of

the prime numbers:

Property 2. Primes are integers n which have no divisor smaller than
p
n other than 1.

Property 2 shows that primes are examples of integers with no small divisors, so

it is natural to look at the more general quantity

S(A , z) ··=
X

n2A
p|n)p>z

1.
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Observe that, if A ✓ (1, x], the quantity S(A ,
p
x) essentially counts primes in

A \ (
p
x, x] by Property 2. We will see in the next section that, in order to deal

with the condition of having no small divisors, it is possible to use sieve methods to

show that

S(A , z) =
X

d

p|d)p6z

µ(d)
X

n2A
d|n

1.

Thus, knowing how A is distributed in arithmetic progressions, i.e., understanding

the set

Ad
··= {a 2 A : d|a}

will gives us some information about the primes in A .

But first, what do we mean when we refer to sieve methods? Broadly speaking,

sieves are used to bound the size of a set after elements with certain “undesirable”

properties have been removed. A basic example of a sieve is the method of inclusion-

exclusion, which gives an exact count for the number of elements in a set. In this

chapter, we will focus on inclusion-exclusion and its relationship to the Sieve of

Eratosthenes. We will also examine some variants of the Sieve of Eratosthenes.

7.2 Inclusion-Exclusion

As mentioned in the introduction, sieve methods are useful for counting elements

with certain desirable properties. Sometimes this amounts to counting the elements

in the union of several sets. But what happens if those sets have some overlap?

If we want to count all of the elements in the above diagram exactly once, we

would use the following formula:
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#(A [ B [ C) = #A+#B +#C

�#(A \ B)�#(B \ C)�#(C \ A)

+ #(A \ B \ C)

Example 1. How many integers in [1, 100] are not divisible by 2, 3 or 5?

Let A = {n 2 Z : 2 | n}, B = {n 2 Z : 3 | n}, C = {n 2 Z : 5 | n}. Observe

that

#A = b100/2c = 50,

#B = b100/3c = 33,

#C = b100/5c = 20,

#(A \ B) = b100/6c = 16,

#(B \ C) = b100/15c = 6,

#(C \ A) = b100/10c = 10,

#(A \ B \ C) = b100/30c = 3.

Then, the number of integers that are not divisible by 2, 3 or 5 is

100� (50 + 33 + 20� 16� 6� 10 + 3) = 26.

We can give a general statement of the principle of inclusion-exclusion using the

Möbius function, µ. Let m = p1 · · · pk. Then, we have

X

d|m

µ(d)

�
x

d

⌫
= bxc �

kX

i=1

�
x

pi

⌫
+

X

16i<j6k

$
x

pipj

%
± · · · .(7.2.1)

In the example above, x = 100 and m = 2 · 3 · 5 = 30. Finding the number of

integers in [1, 100] that are not divisible by 2, 3, or 5 amounts to asking how many

numbers in that range are relatively prime to 30.

Let’s prove that
X

d|m

µ(d)

�
x

d

⌫
yields the correct answer. Since

X

d|N

µ(d) =

8
<

:
1 if N = 1

0 if N > 1,
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it follows that

X

n6x

gcd(n,m)=1

1 =
X

n6x

X

d|gcd(n,m)

µ(d)

=
X

n6x

X

d|n
d|m

µ(d)

=
X

d|m

µ(d)
X

n6x

d|n

1

=
X

d|m

µ(d)

�
x

d

⌫
.

Most sieves are not as exact, nor as user-friendly, as inclusion-exclusion. How-

ever, they are powerful tools for giving (approximate) answers to the question “How

many numbers are there with a given property?”

7.3 Sieve of Eratosthenes

Sieves have been used for thousands of years, dating back to Eratosthenes. The

Sieve of Eratosthenes is used to generate a table of prime numbers by systematically

removing all integers with “small” primes as proper divisors.

1 2○ 3○ �4 5○ �6 7 �8 �9 ⇢⇢10

11 ⇢⇢12 13 ⇢⇢14 ⇢⇢15 ⇢⇢16 17 ⇢⇢18 19 ⇢⇢20

⇢⇢21 ⇢⇢22 23 ⇢⇢24 ⇢⇢25 ⇢⇢26 ⇢⇢27 ⇢⇢28 29 ⇢⇢30

In a table with N integers, one begins by circling the prime 2, and then crossing

out all multiples of 2. Next, one circles the prime 3 and crosses out all multiples

of 3. This continues until all of the primes up to
p
N have been circled, and their

corresponding multiples have been crossed out. At that point, the remaining entries

in the table must be prime since it is impossible for a composite number that is less

than N to have two prime factors greater than
p
N .
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One might wonder how many numbers are left uncrossed and uncircled after

performing the sieve of Eratosthenes (i.e., how many primes p are there with
p
N <

p 6 N)? We will consider this question more carefully in Chapter 8.

There is a nice generalization of the Sieve of Eratosthenes for detecting “almost

primes.” Namely, rather than sieving multiples of primes up to N1/2, one could

instead go up to N↵ for any ↵ 2 (0, 1/2). Then, the numbers that remain have no

prime factors less than N↵. But this also means that these remaining numbers have

at most b↵�1
c prime factors. Such numbers are “almost prime” in the sense that

they have a restricted number of prime factors. One could ask, for example, how

many numbers there are between 1 and N with at most k prime factors, where k is

a positive integer that is small relative to N .

7.3.1 Sieving for values of µ(n)

We can also use the Sieve of Eratosthenes to find values of the Möbius function. In

this case, we start with a table that has all 1’s as entries:

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

First, we flip the sign on every even entry, replacing every second even entry with

a zero to account for the fact that these integers are divisible by 4, and µ(4 ·m) = 0

for all positive integers m. Here, red represents �1, blue represents +1, and grey

represents 0. The entries in the table that are not in the set {0, 1} correspond to

the primes that have already been checked at this stage (for reasons that will later

6



become clear, whenever we flip an even number to red, we also multiply all of the

numbers in the boxes that we flip by two).

1 2 1 0 1 2 1 0 1 2

1 0 1 2 1 0 1 2 1 0

1 2 1 0 1 2 1 0 1 2

1 0 1 2 1 0 1 2 1 0

1 2 1 0 1 2 1 0 1 2

1 0 1 2 1 0 1 2 1 0

1 2 1 0 1 2 1 0 1 2

1 0 1 2 1 0 1 2 1 0

1 2 1 0 1 2 1 0 1 2

1 0 1 2 1 0 1 2 1 0

Next, we flip the sign on every multiple of three, replacing every third multiple

of three with a zero. Again, we multiply the nonzero entries by three when we flip

the signs.

1 2 3 0 1 6 1 0 0 2

1 0 1 2 3 0 1 0 1 0

3 2 1 0 1 2 0 0 1 6

1 0 3 2 1 0 1 2 3 0

1 6 1 0 0 2 1 0 1 2

3 0 1 0 1 0 3 2 1 0

1 2 0 0 1 6 1 0 3 2

1 0 1 2 3 0 1 6 1 0

0 2 1 0 1 2 3 0 1 0

1 0 3 2 1 0 1 2 0 0

We repeat the same process for multiples of five and seven.

7



1 2 3 0 5 6 7 0 0 10

1 0 1 14 15 0 1 0 1 0

21 2 1 0 0 2 0 0 1 30

1 0 3 2 35 0 1 2 3 0

1 42 1 0 0 2 1 0 0 0

3 0 1 0 5 0 3 2 1 0

1 2 0 0 5 6 1 0 3 70

1 0 1 2 0 0 7 6 1 0

0 2 1 0 5 2 3 0 1 0

7 0 3 2 5 0 1 0 0 0

At this point, we would appear to be finished, since we have handled all of the

primes up to
p
N in a table of size N . However, upon closer inspection, we see

that the last table contains some errors. For example, µ(11) should be �1 since 11

is prime. However, the 11th entry in the table is 1. The same problem holds for

all numbers containing a prime factor larger than
p
N. The good news is that each

entry in the table contains at most one prime factor larger than
p
N , so we simply

need to store the product of primes that have already been used in each entry in

the table, and then look for entries that are “too small” relative to their positions

in the table. Every nonzero entry that is “too small” relative to its location is thus

missing a large prime factor, so we flip the signs on those entries and obtain a table

with correct values of µ(n).

1 2 3 0 5 6 7 0 0 10

1 0 1 14 15 0 1 0 1 0

21 2 1 0 0 2 0 0 1 30

1 0 3 2 35 0 1 2 3 0

1 42 1 0 0 2 1 0 0 0

3 0 1 0 5 0 3 2 1 0

1 2 0 0 5 6 1 0 3 70

1 0 1 2 0 0 7 6 1 0

0 2 1 0 5 2 3 0 1 0

7 0 3 2 5 0 1 0 0 0
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7.3.2 Sieving for primes of the form n2 + 1

To use the Sieve of Eratosthenes to find integers n for which n2 + 1 is prime, we

first find the congruence conditions that prohibit such numbers from being prime,

and then we eliminate the arithmetic progressions of values of n that satisfy those

congruence conditions.

For example, notice that 12+1 = 2 is prime, so 1 is an integer n for which n2+1

is prime. Now, n2 + 1 ⌘ 0 (mod 2) if and only if n ⌘ 1 (mod 2). So, we can cross

out all n ⌘ 1 (mod 2) in our table.

1○ 2 �3 4 �5 6 �7 8 �9 10

⇢⇢11 12 ⇢⇢13 14 ⇢⇢15 16 ⇢⇢17 18 ⇢⇢19 20

⇢⇢21 22 ⇢⇢23 24 ⇢⇢25 26 ⇢⇢27 28 ⇢⇢29 30

Observe that n2 + 1 ⌘ 0 (mod 3) has no solutions, so there are no arithmetic

progressions (mod 3) that need to be eliminated.

We see that 22 + 1 = 5, so 2 is an integer that gives rise to a prime of the form

n2 + 1. Moreover, n2 + 1 ⌘ 0 (mod 5) if and only if n ⌘ 2, 3 (mod 5). Thus, we

eliminate all integers n ⌘ 2, 3 (mod 5) with n > 2.

1○ 2○ �3 4 �5 6 �7 �8 �9 10

⇢⇢11 ⇢⇢12 ⇢⇢13 14 ⇢⇢15 16 ⇢⇢17 ⇢⇢18 ⇢⇢19 20

⇢⇢21 ⇢⇢22 ⇢⇢23 24 ⇢⇢25 26 ⇢⇢27 ⇢⇢28 ⇢⇢29 30

There are no solutions to n2 + 1 ⌘ 0 (mod 7) or (mod 11). However, there are

solutions (mod 13). We have n2 + 1 ⌘ 0 (mod 13) if and only if n ⌘ ±5 (mod 13).

Thus, we can eliminate these congruence classes (mod 13).

Observe that 42+1 = 17, so we circle 4. On the other hand, n2+1 ⌘ 0 (mod 17)

if and only if n ⌘ ±4 (mod 17), hence we need to eliminate all n > 4 with n ⌘ ±4

(mod 17).

Continuing in this fashion (stopping the sieving process once we have p = N ,

the size of the table), we obtain the following table of integers n for which n2 + 1 is

prime:
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1○ 2○ �3 4○ �5 6○ �7 �8 �9 10○
⇢⇢11 ⇢⇢12 ⇢⇢13 14○ ⇢⇢15 16○ ⇢⇢17 ⇢⇢18 ⇢⇢19 20○
⇢⇢21 ⇢⇢22 ⇢⇢23 24○ ⇢⇢25 26○ ⇢⇢27 ⇢⇢28 ⇢⇢29 ⇢⇢30

It is not known whether there are infinitely many primes of the form n2+1. The

strongest result that is known is that there are infinitely many n for which n2+1 has

at most 2 prime factors. There are also a number of important papers investigating

the size of the largest prime factor of n2 + 1, including a stunning 2024 paper of

Hector Pasten [1] which shows that it must be at least of size about (log log n)2. In

Chapter 8, we will use sieve methods to obtain an upper bound on the number of

primes of the form n2 + 1. The work of Pasten uses deep results about Shimura

curves, which fall outside the purview of this course.

7.4 Modern Sieves

In modern times, more-sophisticated sieves have been developed (by Brun, Selberg,

Linnik, and others) to attack famous problems in number theory, such as the Twin

Primes Conjecture and the Goldbach Conjecture. While these problems are still

unsolved, we will see how sieves can shed some light on them. First, we will see

how we can use Brun’s sieve to obtain upper bounds for the number of twin prime

pairs, or to show that the set of positive integers n such that n2 + 1 is prime has

asymptotic density zero. Later in the course, we will see how the work of Selberg

led to an improvement on Brun’s sieve (this is often referred to as “Selberg’s sieve”).

Both Brun’s sieve and Selberg’s sieve are examples of combinatorial sieves, which

are proven using combinatorial arguments. We will also encounter the Large Sieve,

which is proven using analytic methods. The Large Sieve is used to prove deep

results about the distribution of primes in arithmetic progressions.

In the last decade, sieves have played a key role in the two proofs that there are

bounded gaps between primes infinitely often (due to Zhang and Maynard) and in

the proof that all odd numbers greater than 5 can be written as a sum of three primes

(the so-called Ternary Goldbach Theorem, due to Helfgott). In particular, a variant

of the Selberg sieve (due to Barban and Vehov; adapted to this context by Goldston,

Pintz, and Yıldırım) was a key ingredient in Zhang’s proof. Maynard created his

own improvement to the Selberg sieve in his proof of bounded gaps between primes.
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Helfgott’s proof uses the Large Sieve as well as a variant of the Selberg sieve studied

by Barban-Vehov et al. While the proofs of bounded gaps between primes and the

Ternary Goldbach Theorem go beyond the scope of this course, you will become

familiar with some of the main ingredients that arise from sieve theory.

7.5 Exercises

Exercise 7.1. An integer n is called y-smooth (or y-friable) if all of its prime factors

are less than or equal to y. Let  (x, y) := #{n 6 x : if p | n then p 6 y}. In other

words,  (x, y) counts the number of y-smooth integers in the interval [1, x]. In this

exercise, we will obtain an estimate for the count given by the Sieve of Eratosthenes

using some facts about smooth numbers.

(a) Let Py :=
Q

p6y
p. Using the notation introduced in this chapter, let

S(N, y) := #{n 6 x : n is not divisible by any prime 6 y}.

Explain why

S(N, y) =
X

d|Py
d6x

µ(d)

�
x

d

⌫

= x
X

d|Py
d6x

µ(d)

d
+O( (x, y)).

(b) Next we will use a trick of Rankin to estimate  (x, y). Rankin observed that,

for any � > 1/2,

 (x, y) =
X

n6x

p|n)p6y

1 6
X

n6x

p|n)p6y

✓
x

n

◆�

6 x�
Y

p6y

✓
1�

1

p�

◆�1

.

Use Rankin’s trick to argue that

 (x, y) ⌧ x�
Y

p6y

✓
1 +

1

p�

◆
.
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(c) Use the fact that 1 + x 6 ex to show that

 (x, y) ⌧ exp

0

@� log x+
X

p6y

1

p�

1

A .

(d) Take � := 1� ⌘ with ⌘ ! 0 as y ! 1. Deduce that
X

p6y

1

p�
6
X

p6y

1

p
(1 + (⌘ log p)y⌘).

(e) Take ⌘ := 1
log y . Conclude that

 (x, y) ⌧ x(log y) exp

✓
�
log x

log y

◆

as x ! 1. Here, you may use (without proof) the facts that
P

p6x

1
p
⇠ log log x

and
P

p6x

log p
p

⇠ log x as x ! 1.

(f) Show that

X

d|Py
d6x

µ(d)

d
=
Y

p6y

✓
1�

1

p

◆
+O

 
(log y)2 exp

✓
�
log x

log y

◆!
.

(Hint: Start by showing that
X

d|Py
d6x

µ(d)

d
=
Y

p6y

✓
1�

1

p

◆
�

X

d|Py
d>x

µ(d)

d

and apply partial summation to the subtracted sum.)

(g) Use the previous parts to conclude that

X

d|Py
d6x

µ(d)

�
x

d

⌫
= x

Y

p6y

✓
1�

1

p

◆
+O

 
x(log y)2 exp

✓
�
log x

log y

◆!

as x, y ! 1.

(h) As a corollary, deduce that

⇡(x) ⌧
x

log x
(log log x).

Your proof should NOT use Chebyshev’s inequality! Hint: Begin by proving

that ⇡(x) 6 S(N, y) + ⇡(y) and then use the inequality 1� u 6 e�u for u > 0.

Again you will need the estimate for the sum of 1/p and you must choose y

appropriately.
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